Room A

Problem 1. Observe that for some small integers, if we attach some extra digits on the right hand side, we can "complete" them to a power of 2. For example, for the integer 1, we write 6 on the right to get 16 " 2^4 . Similarly, we write 56 to the right of 2 to get 256 " 2^8 . Some more examples:

Seems easy enough... right? Next one is a bit harder.

```
7 70, 368, 744, 177, 664 " 2<sup>46</sup>
```

That took some work!

8 8192 " 2¹³ 9 9007199254740992 " 2⁵³

Almost gave up there!

		10	1024 "	2 ¹⁰
	11	112589990	6842624"	2 ⁵⁰
12	12089258	81961462917	4706176"	2 ⁸⁰

Phew!

13 131072 " 2¹⁷

... and so on.

Do you think that any integer can be "completed" to a power of two by writing some more digits to the right? Or is it impossible to do this for some integers?