Math Circle Explorations: Session 3

Room A

Problem 1. Observe that for some small integers, if we attach some extra digits on the right hand side, we can "complete" them to a power of 2 . For example, for the integer 1, we write 6 on the right to get 16 " 2^{4}. Similarly, we write 56 to the right of 2 to get 256 " 2^{8}. Some more examples:

$$
\begin{gathered}
3 \boxtimes 32^{\prime \prime} \quad 2^{5} \\
4 \boxtimes 4096^{\prime \prime} 2^{12} \\
5 \boxtimes 512^{\prime \prime} 2^{9} \\
6 \boxtimes 64{ }^{\prime \prime} 2^{6} \ldots
\end{gathered}
$$

Seems easy enough... right? Next one is a bit harder.

$$
7 \boxtimes \quad 70,368,744,177,664 \text { " } 2^{46}
$$

That took some work!

$$
\begin{array}{rrr}
8 \boxtimes 8192 " & 2^{13} \\
9 \boxtimes & 9007199254740992 " & 2^{53}
\end{array}
$$

Almost gave up there!

$$
\begin{array}{rrrr}
& 10 \boxtimes 1024 " & 2^{10} \\
& 11 \boxtimes & 1125899906842624^{\prime \prime} & 2^{50} \\
12 \boxtimes & 1208925819614629174706176^{\prime \prime} & 2^{80}
\end{array}
$$

Phew!

$$
13 \boxtimes 131072 \text { " } 2^{17}
$$

... and so on.
Do you think that any integer can be "completed" to a power of two by writing some more digits to the right? Or is it impossible to do this for some integers?

