Math-Circle: Session 3

TIFR-CAM and ICTS

November 21, 2022

π Again

Problem 1. Let us consider convex figures in the plane. A convex figure has the property that if two points A and B are in the figure, then the straight line segment $A B$ joining A and B is also in the figure. Define the diameter D of the figure as the largest possible distance between two points in the figure. Define the circumference C as the length of its perimeter. Show that C / D is always less than or equal to π. For what figure(s) is it equal to π ? Is the answer unique?

Note: This shows that π is the maximum possible ratio of C / D for convex figures. And, the circle is one of the maximising figure. In nature, you may encounter various symmetrical figures, such as spheres (shape of planets, soap bubbles etc..), or Romanesco broccoli (search it on google) and many others. Such symmetrical shapes appear naturally in nature often because such shapes minimise/maximise some quantity associated with the shape.

How to Measure

We are all familiar with the notion oflength. For example, if A and B are two points, then the length of the line segment $A B$ is obtained by putting a ruler between points A and B and reading the number given by the ruler. Note of course that there is an unit system used while taking this reading. For example it can be 15.24 cm is the SI unit, or it can be 6 inches in the imperial system (used in U.S.A). Therefore, depending on which unit system we use, we can assign different numbers to mean the length of the same object $A B$. This number is giving you a sense of how large your line segment is. Furthermore, apart from this discrepancy caused because of different unit systems, different people may as well have a different sense about how large the object is. For example, if a person has myopia or hypermetropia, his/her sense of size will be different from that of a person who has normal eyesight. Not only that, your sense of size may also depend on the direction you are looking at. For example, imagine you are wearing glasses which magnifies differently in different directions, i.e. the magnifying power of the glass is different in different portions of the glass.

Therefore, we understand that there is not a unique meaning to the "size" of an object. The size of an object can mean many many things. However, whenever we talk about the "size", it should satisfy some basic properties. For example, if $A B$ and $C D$ are two line
segments which does not overlap with each other (i.e. their intersection is empty), then the total size of the union of $A B$ and $C D$ should be the sum of sizes of $A B$ and $C D$.

In mathematics we have to reconcile all these discrepancies. Therefore, when we define the notion of size of some object, we do account for the fact that there can be many different meanings to the "size" of an object. But, we do impose the natural conditions it should satisfy. Having understood these explanations, let us now define the concept of ameasure :

Let X be a set. For each subset $A \subset X$, we want to assign a number to A (which intuitively describes how large the set A is). Call this assigned number $\mu(A)$. Then, μ is called a measure ifit satisfies the following property:

If A_{1}, A_{2}, \ldots are pairwise disjoint sets, then

$$
\begin{equation*}
\mu\left(A_{1} \cup A_{2} \cup A_{3} \cup . .\right)=\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+\mu\left(A_{3}\right)+\ldots \tag{0.1}
\end{equation*}
$$

Note that, apart from above restriction on μ, we have not put any other restriction. In particular, in this generalised notion of measure, the assigned number $\mu(A)$ can be any real number. It can even be a negative real number. Or, even more generally, it can also be a complex number.
Let us consider an example: Let $X=\mathbb{N}=\{1,2,3,4, \ldots\}$ be the set of natural numbers. To each positive integer n, we assign a number a_{n} to it. We can then define a measure μ on N be assigning to each $A \subset N$

$$
\mu(A)=\sum_{n \in A} a_{n}
$$

Check that the above definition of μ satisfies the condition (0.1).

Use the above generalised notion of a measure to solve the following problems:

