Math-Circle: Session 3

TIFR-CAM and ICTS

November 21, 2022

Problem 2. Consider arithmetic progressions

$$A_{1} = \{a_{1}, a_{1} + d_{1}, a_{1} + 2d_{1}, \dots \},\$$

$$A_{2} = \{a_{2}, a_{2} + d_{2}, a_{2} + 2d_{2}, \dots \},\$$

$$A_{3} = \{a_{3}, a_{3} + d_{3}, a_{3} + 2d_{3}, \dots \},\$$

$$\vdots$$

$$A_{m} = \{a_{m}, a_{m} + d_{m}, a_{m} + 2d_{m}, \dots \},\$$

where for each A_k , a_k is the first term and d_k is the common difference. Assume that arithmetic progressions $A_1, A_2, ... A_m$ are pairwise disjoint. Also, assume that $\mathbb{N} = \bigcup_{k=1}^m A_k$. Prove that

- $\frac{1}{d_1} + \frac{1}{d_2} + ... + \frac{1}{d_m} = 1$
- For some $i \neq j$, $d_i = d_j$.
- (Bonus problem) Can you find all such arithemetic progressions A₁, A₂, ...A_m such that the above conditions hold?

Hint: Given $N = \bigcup_{k=1}^{m} A_k$ and A_k are pairwise disjoint, the first natural conclusion is that size of N must be equal to sum of sizes of A_k . If your notion of size of a set is the number of elements in that set (i.e. its cardinality), you will get $\infty = \infty + \infty + \infty + \dots + \infty$. This does not give you any useful information. Recall however that you have a freedom in choosing the notion of size. This is done by choosing any numbersa_n of your choice as explained above. Note that the standard notion of size using cardinality corresponds to $a_n = 1$ for all n. Think of some other choice of numbers a_n so that sum $\sum_{n \in A_k} a_n$ can be computed in terms of a simple formula. Then, use the conclusion that the size of N must be equal to sum of sizes of A_k to derive information about arithmetic progressions A_k .