Math-Circle: Session 3

TIFR-CAM and ICTS

November 21, 2022

Problem 2. Consider arithmetic progressions

$$
\begin{gathered}
\mathrm{A}_{1}=\left\{\mathrm{a}_{1}, \mathrm{a}_{1}+\mathrm{d}_{1}, \mathrm{a}_{1}+2 \mathrm{~d}_{1}, \ldots\right\}, \\
\mathrm{A}_{2}=\left\{\mathrm{a}_{2}, \mathrm{a}_{2}+\mathrm{d}_{2}, \mathrm{a}_{2}+2 \mathrm{~d}_{2}, \ldots\right\}, \\
\mathrm{A}_{3}=\left\{\mathrm{a}_{3}, \mathrm{a}_{3}+\mathrm{d}_{3}, \mathrm{a}_{3}+2 \mathrm{~d}_{3}, \ldots\right\}, \\
\vdots \\
\mathrm{A}_{\mathrm{m}}=\left\{\mathrm{a}_{\mathrm{m}}, \mathrm{a}_{\mathrm{m}}+\mathrm{d}_{\mathrm{m}}, \mathrm{a}_{\mathrm{m}}+2 \mathrm{~d}_{m}, \ldots\right\},
\end{gathered}
$$

where for each A_{k}, a_{k} is the first term and d_{k} is the common difference. Assume that arithmetic progressions $A_{1}, A_{2}, . . A_{m}$ are pairwise disjoint. Also, assume that $\mathbb{N}=U_{k=1}^{m} A_{k}$. Prove that

- $\frac{1}{d_{1}}+\frac{1}{d_{2}}+. .+\frac{1}{d_{m}}=1$
- For some $\mathrm{i} \not \mathrm{j}_{\mathrm{j}}, \mathrm{d}_{\mathrm{i}}=\mathrm{d}_{\mathrm{j}}$.
- (Bonus problem) Can you find all such arithemetic progressions $A_{1}, A_{2}, . . A_{m}$ such that the above conditions hold?

Hint: Given $N=\bigcup_{k=1}^{m} A_{k}$ and A_{k} are pairwise disjoint, the first natural conclusion is that size of N must be equal to sum of sizes OA $_{k}$. If your notion of size of a set is the number of elements in that set (i.e. its cardinality), you will get $\infty=\infty+\infty+\infty+\ldots+\infty$. This does not give you any useful information. Recall however that you have a freedom in choosing the notion of size. This is done by choosing any numbersa ${ }_{n}$ of your choice as explained above. Note that the standard notion of size using cardinality corresponds to $a_{n}=1$ for all n. Think of some other choice of numbers a_{n} so that sum $\sum_{n \in A_{k}} a_{n}$ can be computed in terms of a simple formula. Then, use the conclusion that the size of \mathbb{N} must be equal to sum of sizes of A_{k} to derive information about arithmetic progressions A_{k}.

