# Math-Circle: Session 3 

TIFR-CAM and ICTS

November 21, 2022

Problem 3. Let $R$ be a rectangle. Suppose you tile the rectangleR using smaller rectangles $R_{1}, R_{2}, \ldots, R_{m}$. The sides of each rectangle $R_{k}$ is parallel to the corresponding sides of $R$. The dimensions of rectangles $R_{k}$, i.e. lengths ofits sides, may be different from each other (here, by length I mean the standard length in SI unit). Suppose that each rectangleR ${ }_{k}$ has at least one ofits side (either its length or its breadth or both) ofinteger standard length in SI unit. Prove that the bigger rectangle $R$ also has at least one ofits side ofinteger standard length in SI unit.
Follow the following steps to solve the above problem:

- If $[a, b]$ is an interval on the real line, the standard notion oflength gives the length of [a,b] to beb-a. But, with the generalized notion oflength as described above, for any function $F$ (e.g. $F(x)=x^{2}, e^{x}, \sin (x)$ or any other function of your choice), you can assign to interval $[a, b]$ the numberF $(b)-F(a)$ as its length. That is, we are defining $\mu([a, b])=F(b)-F(a)$. Check that this definition indeed defines a measure $\mu$ which satisfies (0.1).
- If $R$ is a rectangle with its vertices at $(a, x),(b, x),(b, y),(a, y)$ in the coordinate plane, the standard notion of area gives the area of this rectangle as $(b-a)(y-x)$. But, with the generalized notion of area as described above, for any functionF, you can assign to the rectangle $R$ the number $(F(b)-F(a)) \times(F(y)-F(x))$ as its area. That is, we are defining $\mu(R)=(F(b)-F(a)) \times(F(y)-F(x))$. Check that this definition indeed defines a measure $\mu$ which satisfies (0.1).
- Now lets go back to the framework of the above problem. If a rectangRe is tiled using smaller rectangles $R_{1}, R_{2}, . . R_{m}$, the most immediate conclusion is that the area ofR is sum of areas of $R_{k}$. That is,

$$
\begin{equation*}
\mu(R)=\mu\left(R_{1}\right)+\mu\left(R_{2}\right)+. .+\mu\left(R_{m}\right) . \tag{0.2}
\end{equation*}
$$

If you work with the standard notion of area which is $\mu(R)=(b-a)(y-x)$, the equation (0.2) may not give you any information. But, note that you also have a freedom of the function $F$ while defining the notion of area. Try to think of a function $F$ so that you can derive information about the rectangleR using the equation(0.2). While thinking of such a function $F$, try to use the given information that at least on side of each rectangle $R_{k}$ is ofinteger length.

