Maths Circle India: Module 8, Session 1
 Organized by Indian Statistical Institute
 Session Date: 13th January, 2023

A Shortcut for Computing Squares

Suraj is very scared of computations. His friend Selim, on the other hand, loves computations and knows many cool computational tricks. One day, Selim taught Suraj a shortcut for computing the square of any positive integer whose rightmost digit is 5 .

We illustrate this computational shortcut with a few examples. Suppose we would like to compute the square of 65 . Look at the integer that is obtained when we remove the rightmost digit - that will be 6 in this case. Multiply this integer with its successor. That will give us $6 \times(6+1)=6 \times 7=42$. Therefore, we can conclude that

$$
65 \times 65=4225 .
$$

Let us take another example. Suppose we want to calculate 95×95. Note that the number obtained by removing the rightmost digit is 9 . When we multiply 9 with its successor, we get $9 \times 10=90$. Therefore

$$
95 \times 95=9025 .
$$

Similarly, we can compute $85 \times 85=7225,35 \times 35=1225,55 \times 55=3025,105 \times 105=11025$, etc.

The general method can be described as follows. IfN is a positive integer whose rightmost digit is 5 , then we first remove this digit and obtain the integer M. Then we calculate $P=M(M+1)$. Finally, we obtain N^{2} by writing the number P followed by the digit 2 and then the digit 5.

Problem 2: Show mathematically that the method suggested by Selim always works.

