Maths Circle India: Module 8, Session 3
 Organized by Indian Statistical Institute Session Date: 17th February, 2023

1 Greatest Common Divisor

Suppose a and b are two positive integers. A positive integer d is called the greatest common divisor (gcd) (also known as highest common factoror hcf) of a and bif

- d divides both a and b,
- if a positive integer c divides both a and b, then c divides d.
(Here m divides n means n is divisible by m .)
(i) Assume that $a>b$. We can find integers q_{0}, r_{0} such that $a=q_{0} b+r_{0}$, where $q_{0} \geq 1$ and $0 \leq r_{0}<b$. If $r_{0} 0$, we then find integers q_{1}, r_{1} such that $b=q_{1} r_{0}+r_{1}$, where $q_{1} \geq 1$ and $0 \leq r_{1}<r_{0}$. Again if $r_{1} 0$ we divide r_{0} by r_{1} and get remainder r_{2}, and so on. This process eventually terminates (Why?), and we get $r_{n-2}=q_{n} r_{n-1}+r_{n}$, and finally $r_{n-1}=q_{n+1} r_{n}$.
- Show that r_{n} divides both a and b.
- If c is a common divisor of a and b, then show that c divides r_{n}.

In particular, according to the definition of gcd given above, r_{n} is the gcd of a and b. This will prove that the Euclidean algorithm of finding gcd actually works.
(ii) Let $a>b$. Prove that the gcd of a and b is the same as the gcd ofa $-b$ and b

