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Primes, permutations and a magic formula

1. In her maths class, Aakriti learns that for a natural number n, the number n!, called the factorial
of n is defined as n! = n(n — 1)(n — 2)(n — 3) ---2(1). For example, 4! = 4(3)(2)(1) = 24. She
learns that n! is the total number of distinct orderings of integers 1,2, ...,n. Each such ordering
is called a permutation of the the set of first n natural numbers. A permutation is represented
by jij2 ... jn, where j; indicates the number that replaces 1 in the new ordering, js represents
the number that replaces 2 in the new ordering, and so on. For example, for n = 3 we have
3! = 6 permutationsel23,132,213,231,312 and 321. She also learns that a natural number
n > 11is a prime number if 1 and n are its only divisors. For example, 5 is a prime number but
since 6 = 2(3), it is not a prime number. Aakriti’s teacher tells her that there is a connection
between factorials and prime numbers and asks her to find it.

(a) Given a prime number p, for each permutation of {1,2,3,...,(p — 1)}, Aakriti draws a
corresponding closed figure as follows. She first draws a circle. For p = 5, for example, she
considers five points which are the vertices of a regular pentagon inscribed inside this circle.
Suppose the vertices are labeled as Ay, A1, As, A3, A4. Then to represent the permutation
2431, she joins Ag to As, then As to Ay, then A4 to As, followed by Az to Ay, and then
finally she joins A; to Ag. This is illustrated in the figure (on the left) below.
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It is clear that if we rotate (counter-clockwise) the figure by (360°/5) = 72°, we will
get another closed figure (with possibly different shape and arrows directions), and hence
another permutation of {1,2,3,4}. This is shown in the picture above on the right.
Show that each closed figure is one of the following two types: (i) Type 1: the closed
figure will remain the same after one rotation by 72° (meaning that it will have the same
shape and arrow directions after rotation)(ii) Type 2: the closed figure will come back to
itself after 5 rotations (each of 72°).



Show that in this case there are 4 different Type-1 figures. The picture below shows two
such closed figures. Can you find the other two? Note that even if two closed figures have
the same shape but different arrow directions, they are considered to be distinct.
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(b) For a closed figure of Type 2 (call it Tp), by successively applying a rotation of 72°, we
get figures 11,15, T3, T4 which are distinct from each other and from Ty. If we apply one
more rotation of 72° to Ty, we will get back to Ty. This is also illustrated in the following
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Can you find some more figures of Type 27

(c) Now, using the same idea, for a given prime p, conclude that there are (p—1) closed figures
of Type 1. Show also that the set of closed figures of Type 2 can be divided exactly into
groups of p distinct closed figures.

(d) Aakriti concludes that for each prime p, the number (p — 1)! + 1 is divisible by p. Is she
correct?

(e) Professor Wilson comes to visit Aakriti’s school one day and brings with him what he calls
a “magic formula.” This formula takes two natural numbers as the input and the output,
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he claims, is always a prime number. Furthermore, he says that every prime number comes
as the output of this formula for suitably chosen input. This is his magic formula:

Fz,y) = (3/;1> <|A2 |- (A2 1)) +2,

where A = z(y + 1) — (y! + 1), and = and y are natural numbers (which are the input).
Here, the notation |A? — 1] means the absolute value of (A% — 1).

Using Part (d) (or otherwise), can you verify Professor Wilson’s claims?
Roundtable with friends

2. Naina, Payel, Rumi, Tina, Anjali and Diksha all study in the same class. However, not all of
them are friends. In fact, each of them does not get along well at all with exactly two others
and is friends with the remaining people. All of them are invited to a birthday party and asked
to be seated around a circular table.

(a) Will they all manage to sit comfortably ensuring that everyone sits between two friends?

(b) Now, try to analyse a slightly more generalised situation as follows:
Suppose 2n people are attending a party where each person does not get along well at
all with at most n — 1 others, and has friendly relations with the remaining people. Is it
possible for all of them to sit comfortably around a circular table so that each person gets
to sit between two people he/she is friends with?
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